Search results for "Sterile neutrino"

showing 10 items of 151 documents

Calculation of the local density of relic neutrinos

2017

Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV. We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the $N$-one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritiu…

AstrofísicaPhysicsSterile neutrinoParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)CosmologiaCOSMIC cancer database010308 nuclear & particles physicsMilky WayHigh Energy Physics::PhenomenologyDark matterFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesCosmic neutrino backgroundBaryon0103 physical sciencesNeutrino010303 astronomy & astrophysicsEvent (particle physics)Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach

2008

Light sterile neutrinos might mix with the active ones and be copiously produced in the early Universe. In the present paper, a detailed multi-flavor analysis of sterile neutrino production is performed. Making some justified approximations allows us to consider not only neutrino interactions with the primeval medium and neutrino coherence breaking effects, but also oscillation effects arising from the presence of three light (mostly-active) neutrino states mixed with two heavier (mostly-sterile) states. First, we emphasize the underlying physics via an analytical description of sterile neutrino abundances that is valid for cases with small mixing between active and sterile neutrinos. Then,…

AstrofísicaSterile neutrinoParticle physicscosmological neutrinosAstrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energyMiniBooNEHigh Energy Physics - Phenomenology (hep-ph)astro-ph0103 physical sciencesScale structurephysics of the early universe010306 general physicsneutrino propertiesPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)Astronomy and Astrophysicshep-phHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNeutrinoPhenomenology (particle physics)Coherence (physics)
researchProduct

A White Paper on keV sterile neutrino Dark Matter

2017

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrin…

AstrofísicaSterile neutrinocosmological modelCold dark mattercosmological neutrinosPhysics beyond the Standard Model[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matter theory01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)White paperHigh Energy Physics - Phenomenology (hep-ph)X-RAY-EMISSIONMETALLIC MAGNETIC CALORIMETERSQUANTUM-FIELD THEORY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: dark matterCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection010303 astronomy & astrophysicsPhysicsdark matter theorynew physicsDOUBLE-BETA-DECAYhep-phneutrino: sterileCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection; Astronomy and AstrophysicsNuclear & Particles PhysicsHigh Energy Physics - Phenomenologyneutrino: detectorDark matter experimentsparticle physics - cosmology connectionastro-ph.COMILKY-WAY SATELLITESCosmological neutrinos3.5 KEV LINENeutrinoParticle Physics - ExperimentAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GADark matterLY-ALPHA FORESTreviewFOS: Physical sciencesContext (language use)neutrino: productionX-raySettore FIS/05 - Astronomia e Astrofisica[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]RIGHT-HANDED NEUTRINOS0103 physical sciencesAstronomical And Space Sciencesnumerical calculationsDark matter experimentXMM-NEWTON OBSERVATIONSneutrino: modelParticle Physics - PhenomenologyDWARF SPHEROIDAL GALAXYCosmologia010308 nuclear & particles physicshep-exdark matter experimentsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsAtomic Molecular Nuclear Particle And Plasma PhysicsCosmological neutrinoAstrophysics - Astrophysics of Galaxies13. Climate actionAstrophysics of Galaxies (astro-ph.GA)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Particle physics - cosmology connection[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentneutrino: oscillation[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Journal of Cosmology and Astroparticle Physics
researchProduct

Dark radiation sterile neutrino candidates after Planck data

2013

Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% …

AstrofísicaSterile neutrinocosmological neutrinosHadronCosmic microwave backgroundAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesPartícules (Física nuclear)symbols.namesake0103 physical sciencesneutrino properties; dark energy theory; neutrino theory; cosmological neutrinosdark energy theoryPlanck010303 astronomy & astrophysicsAxionAstrophysics::Galaxy Astrophysicsneutrino propertiesPhysicsCosmologia010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsDecoupling (cosmology)neutrino theory13. Climate actionDark radiationsymbolsHigh Energy Physics::ExperimentHubble's law
researchProduct

Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background

2020

Sterile neutrinos with mass in the eV-scale and large mixings of order $\theta_0\simeq 0.1$ could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson $\phi$. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, $M_\phi$, and its coupling to sterile neutrinos, $g_s$. Then, we explore how to probe part of the allowed parameter spa…

Astrophysics and AstronomySterile neutrinoParticle physicsScale (ratio)Physics::Instrumentation and Detectorsmedia_common.quotation_subjectPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesNeutrino oscillation010303 astronomy & astrophysicsParticle Physics - Phenomenologymedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Gauge boson010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyhep-phAstronomy and AstrophysicsUniverse3. Good healthSupernovaHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Abelian realization of phenomenological two-zero neutrino textures

2014

In an attempt at explaining the observed neutrino mass-squared differences and leptonic mixing, lepton mass matrices with zero textures have been widely studied. In the weak basis where the charged lepton mass matrix is diagonal, various neutrino mass matrices with two zeros have been shown to be consistent with the current experimental data. Using the canonical and Smith normal form methods, we construct the minimal Abelian symmetry realizations of these phenomenological two-zero neutrino textures. The implementation of these symmetries in the context of the seesaw mechanism for Majorana neutrino masses is also discussed.

CP ViolationPhysicsSterile neutrinoParticle physicsNuclear and High Energy Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFOS: Physical sciences01 natural sciencesZerosHigh Energy Physics - PhenomenologyMAJORANAHigh Energy Physics - Phenomenology (hep-ph)Seesaw mechanismMass Matrix0103 physical sciencesCP violationlcsh:QC770-798High Energy Physics::Experimentlcsh:Nuclear and particle physics. Atomic energy. RadioactivityAbelian groupNeutrino010306 general physicsNeutrino oscillationLeptonNuclear Physics B
researchProduct

Search for sterile neutrino mixing using three years of IceCube DeepCore data

2017

Physical review / D 95(11), 112002(2017). doi:10.1103/PhysRevD.95.112002

FLUXSterile neutrinoParticle physicsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences530High Energy Physics - ExperimentOSCILLATION EXPERIMENTSHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesTRACK RECONSTRUCTIONddc:530010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemLINE-EXPERIMENT-SIMULATORMODELHigh Energy Physics - PhenomenologyNeutrino detectorPhysics and AstronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrino
researchProduct

Heavy sterile neutrinos in stellar core-collapse

2018

We perform spherically symmetric simulations of the core collapse of a single progenitor star of zero age main sequence mass $M_{\rm ZAMS} = 15 \, M_{\odot}$ with two models of heavy sterile neutrinos in the mass range of hundred MeV$/c^2$. According to both models, these hypothetical particles are copiously produced in the center, stream outwards a subsequently decay releasing energy into final states (including neutrinos) of the Standard Model. We find that they can lead to a successful explosion in otherwise non-exploding progenitors. Depending on their unknown parameters (e.g., mass and coupling constants with matter), we obtain either no explosion or an explosion of one of two types, i…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSterile neutrino010308 nuclear & particles physicsStar (game theory)Astrophysics::High Energy Astrophysical PhenomenaCenter (category theory)FOS: Physical sciencesAstrophysicsType (model theory)01 natural sciences7. Clean energyStandard ModelSupernovaHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Astrophysics - Solar and Stellar Astrophysics0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsNeutrinoAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Energy (signal processing)Astrophysics::Galaxy Astrophysics
researchProduct

Sterile neutrinos and flavor ratios in IceCube

2017

The flavor composition of astrophysical neutrinos observed in neutrino telescopes is a powerful discriminator between different astrophysical neutrino production mechanisms and can also teach us about the particle physics properties of neutrinos. In this paper, we investigate how the possible existence of light sterile neutrinos can affect these flavor ratios. We consider two scenarios: (i) neutrino production in conventional astrophysical sources, followed by partial oscillation into sterile states; (ii) neutrinos from dark matter decay with a primary flavor composition enhanced in tau neutrinos or sterile neutrinos. Throughout the paper, we constrain the sterile neutrino mixing parameters…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSterile neutrinoHigh energyParticle physicsMuonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyDark matterFOS: Physical sciencesFluxAstronomy and AstrophysicsBaseline data01 natural sciences3. Good healthHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena010306 general physicsFlavorJournal of Cosmology and Astroparticle Physics
researchProduct

Production of keV sterile neutrinos in supernovae: New constraints and gamma-ray observables

2019

We study the production of sterile neutrinos in supernovae, focusing in particular on the keV--MeV mass range, which is the most interesting range if sterile neutrinos are to account for the dark matter in the Universe. Focusing on the simplest scenario in which sterile neutrinos mixes only with muon or tau neutrino, we argue that the production of keV--MeV sterile neutrinos can be strongly enhanced by a Mikheyev--Smirnov--Wolfenstein (MSW) resonance, so that a substantial flux is expected to emerge from a supernova, even if vacuum mixing angles between active and sterile neutrinos are tiny. Using energetics arguments, this yields limits on the sterile neutrino parameter space that reach do…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSterile neutrinoParticle physicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoHigh Energy Physics::PhenomenologyFOS: Physical sciencesSolar neutrino problemComputer Science::Digital Libraries7. Clean energy01 natural sciencesCosmic neutrino backgroundHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Neutrino detector0103 physical sciencesMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsPhysical Review D
researchProduct